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COURSE CODE: MAT101       

1. Define maximal ideal with examples. Show that an ideal of the ring of integers Z is 

maximal if it is generated by some prime integers. 

2. Define Euclidean domain and prove that every Euclidean ring is a principal ideal 

domain.  

3. If W is a subspace o a vector space V(F), then the set V/W= (u+W : u€V) of all cosets 

of W in V is a vector space over F w.r to addition and scalar compositions defined by: 

(u+W)+(v+W) = (u+v)+W, u,v€V  

a(u+W) = au+W. Aa€ F, u € V 
 
COURSE CODE: MAT102       

1. Define Linear transformation. Let T:R
n
       R

n
 be a Liner transformation of A €ᾳn and 

mn (T(A))= mn (A) 

2. Define Idefinite Integral. If µ be a measure on (X.Ʃ) and f:x      C be integrable with 

respect to µ. Then fµ (A)= A f d µ. 

3. Define Conjugate of p and also state and prove Minkowski’s inequality. 

 
COURSE CODE: MAT103 

1. State and prove Tauber’s Theorem and prove that the Cauchy product of the convergent 

series       Ʃ     (- 1)n-1                               with itself is not convergent. 
              n-1     n 

2. Suppose f is a real value function defined in an open set E R2. Suppose that D1 f1 D2 and D21 
f exist at every point of E1 and D21 f is continuous at some point (a,b) and (D12 f) (a, b) and 
(D12 f) (a, b) = (D21 f) (a, b)  
                   X2 – y2 
If f(x, y) = xy x2 +y2  , (x y)#0 
 
             = 0 ; (x, y) = (0, 0) 
 
Then prove that (Dxy f) (0,0)#(Dyx f) (0, 0)  
  

3. State and prove inverse function theorem. 

 
COURSE CODE: MAT104 

1. A necessary and sufficient condition for a vector x in a convex set S to be an extreme 

point is that x is a basic feasible solution satisfying the system Ax = b, x ≥ 0 

2. Solve the following integral LP Problem using Gomory’s cutting plane method: 

3. Manimize Z= x1 + x2 

 

4. Use dynamic programming to solve the following problem: 

                     2      2    2 

Manimize Z= y1 + y2+y3 
 

Subjected to constraint  
 
Y1+y2+y3 ≥ 15 
 
and y1, y2, y3 ≥ 0 
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1. Define compact space with examples and prove that every closed and bounded interval on 
the real line is compact. Also prove that real line is not compact. 

2. Define T1 – space and T2 – space with examples and prove that every T2 – space is a T1 – 
space is converse true? 

3. Define Cauchy’s sequence in a metric space and prove that every convergent sequence in a 
metric space is a Cauchy sequence. 

 
COURSE CODE: MAT106 

1. State and prove Uniform Boundedness Theorem. 
2. Define positive, normal and unitary operators in a Hibert space. And operator T on a Hibert 

space H is unitary if it is an isometric isomorphism of H it self. 
3. State and prove Derivative of a Composite mapping. 

 
COURSE CODE: MAT107 

1. Describe the classifications of Computers. 
2. What do you mean by Software? Describe the various types of sopftware. 
3. What is Network? Describe LAN, WAN and MAN. 
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